Citation: E. F. Kelley, "Sensitivity of Display Reflection Measurements to Apparatus Geometry," 2002-SID International Symposium Digest of Technical Papers, Society for Information Display, Boston, MA, pp. 140-143, May 19-24, 2002.

11.3: Sensitivity of Display Reflection Measurements to Apparatus Geometry

Edward F. Kelley

National Institute of Standards and Technology, Gaithersburg, Maryland, U.S.A.

Abstract¹

Reflection measurements made upon electronic displays can suffer from non-reproducibility owing to their possible strong dependence upon apparatus geometry. The geometrical dependence arises from non-Lambertian diffusion properties. We show the inadequacies of several conventional reflection measurement methods and offer some guidance on how these methods might be improved or replaced.

1. Introduction

The simple measurements employed to determine the reflection properties of electronic displays generally fall into two categories: diffuse measurements or specular measurements. In reflection, the term "diffuse" refers to light being scattered out of the specular direction; "diffuse" is *not* synonymous with "Lambertian." A surface that exhibits a Lambertian reflectance property is only one

type of diffusing surface, and all diffusing surfaces are not Lambertian. Misconceptions associated with reflection-and in particular the term "diffuse"—have generated a great deal of confusion in the display industry (author included). Space does not permit a full discussion of these details. When the front surface of a display is neither quasi-Lambertian nor specular (like a mirror), the reflection measurement result can be sensitive to the geometrical arrangement of the apparatus. The intermediate state between Lambertian and specular has been referred to as haze [1]. Having a specific name for this intermediate state has become necessary in order to communicate display reflection characteristics. What seems like such a simple measurement can be ruined by a lack of robustness of the result to small changes in the apparatus set up because of the haze component of reflection whenever it is present and non-trivial. We will investigate the geometrical sensitivity of eight different reflection measurement configurations. These kinds of methods are being considered by various display-evaluation standards-making bodies.

2. Apparatus Configurations

In Fig. 1 we show the eight apparatus configurations that are employed in the testing. When reflection measurements are made using such apparatus a luminance *L* measurement of the display is made under a source illuminant configuration. Several kinds of results might be extracted: (1) the luminance *L* by itself as in making a contrast measurement under illumination; (2) the specular reflectance $\zeta = L/L_s$ (note that CIE uses ρ_r [1]), where the luminance *L*_s of the source is considered an important apparatus characterization quantity (as in specular types of measurements)— such a measurement is essentially the same as a luminance measurement from the standpoint of this sensitivity analysis; (3) the luminance factor $\beta = \pi L/E$, where the illuminance from the source is considered an important quantity; and (4) reflectance ρ measurements are displaying the display into an integrating sphere

Fig. 1. Eight reflection measurement apparatus often used to characterize display reflection. The names refer to the placement and/or type of the source illumination.

source. Actually, in (4) we are making a luminance-factor $\beta_{d/10}$ measurement using a diffuse source from some detector angle $\theta_d = 10^\circ$ away from the normal, but this is the same as the reflectance $\rho_{10/d}$ [1]. The Cartesian coordinate system used here is centered at the ideal position of the screen with the *y*-axis as up, the *z*-

¹ Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. This is a contribution of the National Institute of Standards and Technology and is not subject to copyright.

Table 1. Some of the Parameters Specifying Reflection Measurement Apparatus												
DETE	DETECTOR PARAMETERS:											
r _d	Distance of the center of the detector front surface (or lens) from the center (often z_d when detector is on the optical axis)	α	Measurement field angle (the angle of the measured region from the viewpoint of the detector)									
θ_d	Inclination angle of detector from the z-axis	R _d	Radius of the entrance pupil of the detector									
<u>ф.</u>	Rotation angle of the detector about the z-axis starting	к.	Subtense of the entrance pupil of the detector or angular aperture:									
Ψd	from the x-axis and going counter clockwise	мd	$\tan(\kappa_{\rm d}/2) = R_{\rm d}/r_{\rm d}$									
F	F The luminance meter is either focused on the source $(F = S)$ or the display $(F = D)$.											
SOUF	RCE PARAMETERS:											
rs	Distance of center of the source exit port from the center of coordinate system (often z_s when the source is on the optical axis)	$\boldsymbol{\theta}_r$	Angle of ring light outer diameter from normal or angle of outer diameter edge of the exit port of a source positioned close to the display as measured from the normal: $\tan \theta_r = R_s / r_s$									
θ_{s}	Rotation angle of the source from the z-axis	$R_{\rm v}$	Radius of the view port (if so equipped)									
φs	Rotation angle of the source about the <i>z</i> -axis starting from the <i>x</i> -axis and going counter clockwise	κ _s	Subtense of source from the center: $tan(\kappa_s/2) = R_s / r_s$, $\kappa_s = 2\theta_r$									
R _s	Radius of the source exit port (outer diameter of ring light source)	U	The average uniformity of the source luminance over the full extent of the exit port									
ania alang the display surface normal and the version the hard												

axis along the display surface normal, and the *x*-axis in the horizontal plane to the right along the display surface. The display or sample surface is positioned within 0.5 mm of the ideal position and oriented within 0.1° of the ideal *z*-axis. Table 1 provides the list of parameters that specify the reflection apparatus.

In general, the uniformity $U \cong 1$ % for the large sources and any source used in a specular configuration. In configuration D a view-port box source is used. In the standard configuration, the view port is centered along the *z*-axis and serves as the hole through which the luminance measurements are made.

3. Analysis and Results

For the diffuse source configuration H, we employ two entirely different apparatus. One is a 2 m diameter integrating sphere at the center of which is placed the sample with an illuminance meter in the same plane as the sample and placed nearby the sample. For a display that has only a non-trivial haze component (SAEH in Table 3), the reflectance measures $\rho_{d/\theta} = 0.0557$ with a standard deviation of less than 0.3% over the detector angle range from 6° to 20°-a very robust measurement. The second reflectance measurement is performed using a sampling sphere-a closed-cell polystyrene-foam hollow sphere-with a fiber-optic source and a photopic photodiode. The sample is placed upon the exit port. With nothing on the exit port, a photocurrent of J_k is obtained. A white reflectance standard ($\rho_{std} = 0.99$) placed on the exit port gives a photocurrent J_{std} . With the sample in place we get photoof J_{\cdot} The reflectance the sample current is $\rho = \rho_{std}(J-J_k)/(J_{std}-J_k) = 0.0554$ with a standard deviation of less than 3 %. The large standard deviation arises because of the relatively soft exit port (plastic foam). A more rigid sphere would provide more precise results. The polystyrene integrating sphere is used to show that even with a fairly crude apparatus the results can be surprisingly good-less than a 1 % difference between using the crude plastic foam sphere and the large integrating sphere. Thus, the reflectance measurement using diffuse illumination is very robust.

For each of the other experiments or apparatus configurations, a small subset of parameters is selected for sensitivity testing and the rest are held fixed. For each experiment there are a set of k parameters p_i , i = 1, 2, ..., k (normally k = 3, 4, or 5), for which there are standard settings s_i that are changed to varied settings v_i . The varied settings are to simulate alignment and positioning

errors from the standard settings. Methods of experimental design are employed whereby full or fractional factorial designs are used with randomized blocks to provide an approximate model of the result *y*—which can be β , ζ , ρ , or *L*—in terms of the parameters [4]. The result *y* is some unknown function of the parameters $y = g(p_1, p_2, ..., p_k)$. The value of *y* at the standard settings s_i is $y_0 = g(s_1, s_2, ..., s_k)$ for any experiment (apparatus A, B, ..., G). We form the quantity $f = y/y_0$, which provides us a result relative to the standard settings. The sensitivities S_i , expressed in percent, are obtained from the experimental design results in terms of partial derivatives of *f*:

$$S_i = 100\% \frac{\partial f}{\partial p_i} \bigg|_{S_i}$$
(1)

The units of these sensitivities are the inverse units of the parameter p_i . These sensitivities are tabulated for reasonable errors in apparatus set-up such as in per mm of positioning or per degree of misalignment or angular size. In the process of conducting these experiments it is found that the detector distance r_d has no important effect, as should be expected. The detector distance is $r_d = 1$ m or more, and the detector's moderately small angular aperture is $\kappa_d \cong 1^\circ$. This is not to say that the detector acceptance area size cannot be important, it can be [3]. However, no provision is made to deliberately change the detector acceptance area size in these experiments.

In Table 2 we show the standard settings s_i and the varied settings v_i for all configurations expect for configuration H (diffuse source measurements, which is dealt with separately above). Thick-lined boxes highlight the variables that are changed. Table 3 shows the samples measured with a brief description of their reflection components and properties ("L" for Lambertian, "S" for specular, and "H" for haze; boldface indicates the dominant component; smaller font size indicates a lesser contribution). Table 4 shows the sensitivity results. (Relative reproducibility of the sensitivities of repeated experiments proved to be 0.1 %. We report a relative expanded uncertainty with a coverage factor of two of 3 % for these results based upon experience, equipment calibration, and linearity)

Space does not permit a full discussion of these results. The rows labeled "Measured" indicate what is measured in determining the sensitivity: either β (when illuminance is considered important), ζ (when a specular configuration is used), or the luminance *L* (as for

Table 2a. Settings for each configuration.															
		A B-30			B-15		С		D	E-15		E'-15			
		Ring Light Source		Small Side Source at 30°		Small Source	Small Side Source at 15°		Side at 30°	View-l Source	Port Box	Small Specular Source at 15°		Small Specular Source at 15°	
p_i	Unit	Si	v_i	Si	v_i	Si	$S_i = V_i$		v_i	S_i	v_i	Si	v_i	Si	v_i
r _s	mm	76.2	83.8	515.	6 464.	1 515.0	6 464.1	474.7	427.3	76.2	83.8	515.6	464.1	515.6	464.1
$\boldsymbol{\theta}_s$	0	0	1	30	32	15	17	30	32	0	1	15	17	15	17
$\boldsymbol{\theta}_{d}$	0	0	1	0	2	0	2	0	2	0	1	$= \theta_s$	$= \theta_s$	$= \theta_s$	$= \theta_s$
α	0	1.0	0.25	1.0		1.0		1.0		1.0	0.25	0.125	0.25	0.125	0.25
$R_{\rm v}$	mm									31.8	44.5				
F		D		D		D		D		D		S		D	
$R_{\rm s}$	mm	48.9		4.5		4.5		62.5		76.2		9	8	9	8
$\kappa_{\rm s}$	0	40		1		1		15		90		1		1	
	Table 2b. Settings for each configuration, continued.														
			E'-15		F-	15	F	30	F'-	30	G-	45/45		G-45/30)
		Smal Sourc	l Spec ce at 1	ular I 5° S	Large Sp Source a	ecular t 15°	Large Sp Source a	ecular t 30°	Large Sp Source a	ecular t 30°	Proxima Source	l Specular	Proximal Specular Source		
p_i	Uni	t s _i		v _i	Si	<i>v</i> _i	Si	v_i	Si	v_i	Si	v_i	Si		v _i
rs	mm	n 515	.6 4	64.1	474.7	427.3	474.7	427.3	474.7	427.3	80	65	80	70	
θ_{s}	0	15		17	15	17	30	32	30	32	45	47	45	47	
θ_d	0	= 6) _s =	$= \theta_s$	15	17	30	32	30	32	45	47	30		32
α	0	0.12	25 ().25	1		1		1		1		1		
F		D			D		D		S		D		D		
$R_{\rm s}$	mm	n 9		8	62.5		62.5		62.5		76.2		76.2		
κ_{s}	0	° 1 15 15			15		?		?						

contrast measurements—often the luminance sensitivity is identical to that for ζ). The sensitivity indicated for the measurement field angle α arises somewhat from calibration errors of ±0.1 % between measurement field angle settings; so we might excuse between 0.5 % and up to 1 % for calibration errors, but no more than that amount. In general, it should be observed that whenever haze is present ("H" in the "Components" row) the results can show a remarkable sensitivity to small changes in the parameters. In the cases of either a small-specular-source or a small-sidesource apparatus a strong sensitivity is observed. It may be that the requisite alignment will not permit these configuration to be employed except in laboratory settings whenever haze is an important factor in display reflection.

Of all the apparatus configurations, the ring light (A), the large specular source (F), and—as mentioned earlier—the diffuse apparatus (H) prove to be the least sensitive to geometrical variations and are therefore the most robust methods. Even in these more robust cases, except for the diffuse illumination (H), a reasonable effort still must be made to carefully set the apparatus geometry—often to within a fraction of a millimeter and a fraction of a degree—in order to achieve a 1 % reproducibility.

Assume that a sample exhibits all three components of reflection: Lambertian, haze, and specular. Reflection from the diffuse illumination apparatus (H) arises from all three reflection components in the most robust manner. Reflection from the ring light (A) arises from the far wings of the haze profile and any quasiTable 3. Reflection Samples

Name	Compo- nents	Description
SAEH	HL	Display used in automotive research having only a nontrivial haze component, Lamber- tian component is small. The display is off.
OCRT	SL	Sample, looks like an old CRT B&W moni- tor, no haze component, only Lambertian and specular.
FPD	sHL	Sample, from FPD manufacturer, used as front glass, strong haze, weak specular, small Lambertian.
CRT	SHL	Sample, resembles a modern color CRT with front-surface diffusion treatment (haze), weak specular, moderate Lambertian.
FPD2	HL	Tighter haze than FPD (gloss 70), no specu- lar strong haze small Lambertian

Lambertian behavior. Reflection from the large specular source (F) includes the specular reflection, the haze peak, and an integration over much of the significant part of the haze profile around the peak; reflection from the Lambertian component is reduced from that obtained from either the ring light or the diffuse illumination. Additionally, these three methods (ring, large specular, diffuse) integrate the reflection contributions from all rotation angles around the normal or specular direction—a single direction is not preferred.

Table 4a.Sensitivities to parameter variation (S_i in per unit).																		
Configuration: A: Ring Light Source, Focus						B:	B: Small Side Source, Focus on Display											
		on Disp	olay	1	1	B-	-30: S	Source a	t 30°	B-15: Source at 15°								
Sample:		SAEH	SAEH	OCRT	FPD	S	SAEH S		EH	SA	AEH	SAEH	OCRT	OCRT	FPD	FPD	CRT	
Components:		HL	HL	SL	SHL		$\mathbf{H} \mathrm{L}$	HL H]	HL	HL	SL	SL	sHL	\mathbf{SHL}	SHL	
Measured:		β	L	β	β		β		L		β	L	β	L	β	L	β	
Result for set-		0.0416		0.0381	1.62	C).017 [′]	7		0.	.101		0.0407		2.72		0.0283	
n Unit		S.	S.	S.	×10	-	S.		<u>S.</u>		S.	S.	S.	S.	×10	S.	S.	
p_i	mm	1.8%	-0.4%	0.1%	0.5%	-	$\frac{D_{l}}{0.0\%}$	-0	$\frac{3_{l}}{4\%}$	0	$\frac{0\%}{0\%}$	-0.5%	0.0%	-0.4%	0.0%	-0.5%	0.0%	
$r_{\rm s}$	• niin	-0.7%	-0.4%	-0.3%	0.570		-8.0%	-0.	-0.470		9.7%	-0.570	-1.2%	-0.470	-20.1%	-0.570	-19.8%	
O _s	0	0.6%	0.7%	0.1%	-0.3%		6.9%	7	-0.070) 1%	21.9%	-0.6%	-0.6%	20.2%	22.0%	19.7%	
0 _d	0	-1.0%	-1.8%	-2.9%	-1 4%		0.770	, ,,	570	20).170	21.770	0.070	0.070	20.270	22.070	17.770	
u																		
		C. L.		bie 4D.	Sensiti	nnes	s to p	aramete	r var	10110	$on (S_i)$	in per u	nit), con	so				
Configu	iration:	C: Large	e Side S cus: Dis	plav	D: Vie Focus	on I	ort B Displa	ox, iv	E. SI		Sour	ulai Sol	lice at 1.	3	Ecous on Display			
Sam	nle [.]	SAFH	0			F	PD	OCRT	SAF	TH I	OCR'		FPD				FPD2	
Compo	nents:	H		SI SI	H	- I	HI	SI	H	r	SI		sHI		H I	sHI	HI HI	
Massurad:		ß	,	ß	ß	3.	ß	ß	7	I	7 I	5111 ۲ I						
Result for		р 		<u>Р</u>	р 		р 	р 	5.1	5	, <i>L</i>	<u>, r</u>	2.72	1.01	4.70	2.73	1.04	
settings	s_{i}, y_{0} :	0.0177	0.0	0404	0.0835	5 0.0	0.0184 0.04		×10)-4	0.039	0 0.014	×10 ⁻	³ ×10 ⁻²	³ ×10 ⁻⁴	×10 ⁻³	×10 ⁻³	
p_i	Unit	S_i		S_i	S_i		Si	S_i	S_i	i	S_i	S_i	S_i	S_i	S_i	S_i	S_i	
r _s	mm	0.0%	0	.0%	1.3%	1.	.1%	0.0%	-0.3	%	0.0%	-0.1	6 -0.3%	6 -0.4%	6 -0.5%	-0.3%	-0.4%	
θ_{s}	0	-7.8%	-0	.2%	-0.4%	0.	.5%	0.2%	-2.2	2%	0.1%	-0.1	6 0.4%	b 1.0%	-2.8%	1.3%	0.9%	
θ_d	0	7.9%	-0	.2%	0.4%	-4	.4%	-0.1%	-		-	-	-	-	-	-	-	
α	0				-1.6%	-1	.0%	-0.2%	-39.	1%	5.1%	-7.6%	6 -1.2%	6 -23.49	% -18.3%	6 -23.3%	6 -36.6%	
$R_{\rm v}$ or $R_{\rm s}$	mm				1.3%	10	.4%	-0.1%	22.8	3%	-0.3%	6.9%	6 16.6%	⁶ 20.6%	6 22.3%	15.8%	20.9%	
			Ta	ble 4c.	Sensiti	vities	s to p	aramete	er var	riatic	on (S_i	in per u	nit), con	tinued.				
F: Large Specular Source at, For								ocus on G: Proximal Specular Source, Focus on D							cus on Di	splay		
Configu	uration:	15°,	30°,				L				irce at	45°, D	etector a	t 45°	Source at 45°, Detector			
		Display	⁷ Disp	lay				Sou	rce			ý			30°	_		
Sam	ple:	SAEH	SAE	CH OC	RT F	PD	FPE	02 SA	EH	SA	AEH	SAEH	OCRT	OCRT	SAEI	H	SAEH	
Compo	onents:	HL	HI	L SI	L sl	ΗL	HI	L I	IL	1	HL	HL	SL	SL	HL		HL	
Meas	Measured:		ζ, Ι	L ζ,	Lζ	, <i>L</i>	ζ, Ι	ζ, L ζ			β	ζ, L	β	ζ, L	β		ζ, L	
Result for set- tings s_i . v_0 :		0.0317	7 0.03	44 0.04	78 0.0	434	0.04	26 0.0	345	0.2	2075	0.0627	0.247	0.0747	0.178	3	0.0551	
p_i	Unit	S_i	S_i	S	i	S _i	Si		S _i		Si	S_i	S_i	S_i	S_i		S_i	
r _s	mm	-0.2%	-0.2	% 0.0	% 0.	0%	0.00	-0.	2%	1.	.2%	0.0%	1.6%	-0.3%	1.8%)	-0.1%	
θ_{s}	0	-1.0%	-1.0	% 0.1	% -0.	2%	-0.5	% -0.	7%	1.	.7%	0.0%	1.4%	-0.4%	1.5%)	-0.2%	
θ_d	0	1.0%	1.00	0.5	% 0.	8%	1.19	% 1.	1.6%		.6%	1.8%	1.8% 1.9%		0.7%	0.7%		

4. References

- ASTM Standards on Color and Appearance Measurement, 5th edition, E 284-95a, "Standard Terminology of Appearance," definition of haze, p. 243, 1996.
- [2] Commission Internationale de l'Eclairage (International Commission on Illumination): Absolute Methods for Reflection Measurement, CIE Technical Report, Publication No. CIE 44, reprinted 1990. See also: A Review of Publications on Properties and Reflection Values of Material Reflection Standards, CIE 46, 1979; and International Lighting Vo-

cabulary, CIE 17.4.

- [3] G. R. Jones and E. F. Kelley, "Reflection Measurement Problems Arising from Haze," 1998-SID International Symposium Digest of Technical Papers, Society for Information Display, Vol. 29, pp. 945-946, Anaheim, CA, May 17-22, 1998.
- [4] George E. P. Box, William G. Hunter, and J. Stuart Hunter, Statistics for Experimenters—an Introduction to Design, Data Analysis, and Model Building (John Wiley & Sons, Inc., New York, U.S.A., 1978).